Loading...

Preprints

Promyelocytic Leukemia Protein (PML) Regulates Stem Cell Pluripotency Through Novel Sumoylation Targets

Spanou S, Makatounakis T, Filippopoulou C, Dougalis G, Stamatakis G, Nikolaou C, Samiotaki M, Chachami G, Papamatheakis J, Kretsovali A.
Preprint from
Preprints.org
21 November 2024
PPR
PPR944224
Abstract
The Promyelocytic Leukemia protein (PML) and its associated nuclear bodies have recently emerged as critical regulators of embryonic stem (ES) cell identity. Despite their recognized importance, the complete spectrum of PML-mediated molecular events in ES cells remains unclear. In this report we have studied how PML is shaping the proteomic and SUMO proteomic landscape in ES cells. Proteomic profiling of PML-depleted ES cells uncovered a downregulation of self-renewal factors and an upregulation of proteins associated with translation and proteasomal activity, reflecting a cellular transition from pluripotency to differentiation. Importantly, PML promotes the sumoylation of pluripotency-related factors, chromatin organizers and cell cycle regulators. We identify SALL1 and CDCA8 as novel PML-directed sumoylation targets, both critical for ES cell maintenance. SALL1 sumoylation increases the activation of the Wnt pathway, contributing to its ability to inhibit ES cell differentiation. Similarly, CDCA8 sumoylation enhances its capacity to promote cell proliferation. Collectively, our findings demonstrate that PML regulates ES cell identity by modulating the abundance or sumoylation of key regulators involved in pluripotency and cell cycle progression.