Loading...

Preprints

Inter-cellular mRNA Transfer Alters Human Pluripotent Stem Cell State

Yoneyama Y, Zhang R, Kimura M, Cai Y, Adam M, Parameswaran S, Masaki H, Mizuno N, Bhadury J, Maezawa S, Ochiai H, Nakauchi H, Potter SS, Weirauch MT, Takebe T.
Preprint from
bioRxiv
27 June 2024
PPR
PPR873725
Abstract

ABSTRACT

Inter-cellular transmission of mRNA is being explored in mammalian species using immortal cell lines (1–3). Here, we uncover an inter-cellular mRNA transfer phenomenon that allows for the adaptation and reprogramming of human primed pluripotent stem cells (hPSCs). This process is induced by the direct cell contact-mediated coculture with mouse embryonic stem cells (mESCs) under the condition impermissible for human primed PSC culture. Mouse-derived mRNA contents are transmitted into adapted hPSCs only in the coculture. Transfer-specific mRNA analysis show the enrichment for divergent biological pathways involving transcription/translational machinery and stress-coping mechanisms, wherein such transfer is diminished when direct cell contacts are lost. After 5 days of mESC culture, surface marker analysis, and global gene profiling confirmed that mRNA transfer-prone hPSC efficiently gains a naïve-like state. Furthermore, transfer-specific knockdown experiments targeting mouse-specific transcription factor-coding mRNAs in hPSC show that mouse-derived Tfcp2l1 , Tfap2c, and Klf4 are indispensable for human naïve-like conversion. Thus, inter-species mRNA transfer triggers cellular reprogramming in mammalian cells. Our results support that episodic mRNA transfer can occur in cell cooperative and competitive processes(4), which provides a fresh perspective on understanding the roles of mRNA mobility for intra- and inter-species cellular communications.