Loading...

Preprints

Generating human AMN and cALD iPSC-derived astrocytes with potential for modeling X-linked adrenoleukodystrophy phenotypes

Kaur N, Singh J.
Preprint from
bioRxiv
1 June 2024
PPR
PPR859763
Abstract
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). Similar mutations in ABCD1 may result in a spectrum of phenotypes in males with slow progressing adrenomyeloneuropathy (AMN) and fatal cerebral adrenoleukodystrophy (cALD) dominating the majority of cases. Mouse model of X-ALD does not capture the phenotype differences and an appropriate model to investigate mechanism of disease onset and progress remains a critical need. Induced pluripotent stem cell (iPSC)-derived and cell models derived from them have provided useful tools for investigating cell-type specific disease mechanisms. Here, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts of two each of apparently healthy control, AMN and cALD patients with non-integrating mRNA-based reprogramming. iPSC lines expanded normally and expressed pluripotency markers Oct4, SOX2, Nanog, SSEA and TRA-1-60. Expression of markers SOX17, brachyury, Desmin, Oxt2 and beta tubulin III demonstrated the ability of the iPSCs to differentiate into all three germ layers. iPSC-derived lines from CTL, AMN and cALD male patients were differentiated into astrocytes. Differentiated AMN and cALD astrocytes lacked ABCD1 expression and accumulated VLCFA, a hallmark of X-ALD. These patient astrocytes provide disease-relevant tools to investigate mechanism of differential neuroinflammatory response and metabolic reprogramming in X-ALD. Further these patient-derived human astrocyte cell models will be valuable for testing new therapeutics.