Role of Yap1 in adult neural stem cell activation

Fan W, Jurado-Arjona J, Alanis-Lobato G, Péron S, Berger C, Andrade-Navarro MA, Falk S, Berninger B.
Preprint from
13 January 2022
Most adult hippocampal neural stem cells (NSCs) remain quiescent with only a minor portion undergoing active proliferation and neurogenesis. The molecular mechanisms that trigger eventually the transition from quiescence to activation are still poorly understood. Here, we found the activity of the transcriptional activator Yap1 to be enriched in active NSCs. Genetic deletion of Yap1 led to a significant reduction in the relative proportion of active NSCs supporting a physiological role of Yap1 in regulating the transition from quiescence to activation. Overexpression of wild type Yap1 in adult NSCs did not induce NSC activation suggesting tight upstream control mechanisms, but overexpression of a gain-of-function mutant (Yap1-5SA) elicited cell cycle entry in NSCs and hilar astrocytes. Consistent with a role of Yap1 in NSC activation, single cell RNA sequencing revealed the partial induction of an activated NSC gene expression program. Yet, Yap1-5SA expression also induced Taz and other key components of the Yap/Taz regulon previously identified in glioblastoma stem cell-like cells. Consequently, dysregulated Yap1 activity led to repression of hippocampal neurogenesis, promoting aberrant differentiation instead.