Loading...

Preprints

A secreted proteomic footprint for stem cell pluripotency

Lewis P, Silajzick E, Smith H, Bates N, Smith CA, Knight D, Denning C, Brison DR, Kimber SJ.
Preprint from
bioRxiv
14 April 2021
PPR
PPR311758
Abstract
With a view to developing a much-needed non-invasive method for monitoring the healthy pluripotent state of human stem cells in culture, we undertook proteomic analysis of the spent medium from cultured embryonic (Man-13) and induced (Rebl.PAT) human pluripotent stem cells (hPSCs). Cells were grown in E8 medium to maintain pluripotency, and then transferred to FGF2 and TGFβ deficient media for 48 hours to replicate an early, undirected dissolution of pluripotency. We identified a distinct proteomic footprint associated with early loss of pluripotency in both hPSC lines, and a strong correlation with changes in the transcriptome. We demonstrate that multiplexing of 4 E8-against 4 E6-enriched biomarkers provides 16 ratio abundances which are each robustly diagnostic for pluripotent state. These biomarkers were further confirmed by Western blotting which demonstrated consistent correlation with the pluripotent state across cell lines, and in response to recovery assays.