Loading...

Preprints

Generation and Validation of Versatile Inducible CRISPRi Embryonic Stem Cell and Mouse Models

Li R, Xia X, Wang X, Sun X, Dai Z, Huo D, Zheng H, Xiong H, He A, Wu X.
Preprint from
bioRxiv
28 April 2020
PPR
PPR156499
Abstract

ABSTRACT

CRISPR-Cas9 has been widely used far beyond genome editing. Fusions of deactivated Cas9 (dCas9) to transcription effectors enable interrogation of the epigenome and controlling of gene expression. However the large transgene size of dCas9-fusion hinders its applications especially in somatic tissues. Here, we develop a robust CRISPR interference (CRISPRi) system by transgenic expression of doxycycline (Dox) inducible dCas9-KRAB in mouse embryonic stem cells (iKRAB ESC). After introduction of specific gRNAs, the induced dCas9-KRAB efficiently maintains gene inactivation, though it exerts modest effects on active gene expression. Proper timing of Dox addition during cell differentiation or reprogramming allows us to study or screen spatiotemporally activated promoters or enhancers and thereby the gene functions. Furthermore, taking the ESC for blastocyst injection, we generate an iKRAB knockin (KI) mouse model that enables shut-down of gene expression and loss-of-function studies ex vivo and in vivo by a simple transduction of gRNAs. Thus, our inducible CRISPRi ESC line and KI mouse provide versatile and convenient platforms for functional interrogation and high-throughput screens of specific genes and potential regulatory elements in the setting of development or diseases.