Loading...

Preprints

Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We’ve Learned from Developmental Neurotoxicity Studies in Animal Models

Welch C, Mulligan K.
Preprint from
Preprints.org
17 February 2022
PPR
PPR455961
Abstract
Substantial evidence indicates that bisphenol A (BPA), a ubiquitous environmental chemical used in the synthesis of polycarbonate plastics and epoxy resins, can impair brain development. Clinical and epidemiological studies exploring potential connections between BPA and neurodevelopmental disorders in humans have repeatedly identified correlations between early BPA exposure and developmental disorders, like attention deficit/hyperactivity disorder and autism spectrum disorder. Investigations using invertebrate and vertebrate animal models have revealed that developmental exposure to BPA can impair multiple aspects of neuronal development, including neural stem cell proliferation and differentiation, synapse formation, and synaptic plasticity—neuronal phenotypes that are thought to underpin the fundamental changes in behavior associated neurodevelopmental disorders. Consistent with BPA-associated neuronal phenotypes, behavioral analyses of BPA-treated animals have shown significant impacts on behavioral endophenotypes related to neurodevelopmental disorders, including altered locomotor activity, learning and memory deficits, and anxiety-like behavior. To contextualize the correlations between BPA and neurodevelopmental disorders in humans, this review summarizes current literature reporting on the developmental neurotoxicity of BPA in laboratory animals, with an emphasis on neuronal phenotypes, molecular mechanisms, and behavioral outcomes. The collective works described here predominantly support the notion that gestational exposure to BPA should be regarded as a risk factor for neurodevelopmental disorders.