Loading...

Preprints

Implementation of a novel optogenetic tool in mammalian cells based on a split T7 RNA polymerase

Dionisi S, Piera K, Baumschlager A, Khammash M.
Preprint from
bioRxiv
28 October 2021
PPR
PPR413037
Abstract

ABSTRACT

Optogenetic tools are widely used to control gene expression dynamics both in prokaryotic and eukaryotic cells. These tools are used in a variety of biological applications from stem cell differentiation to metabolic engineering. Despite some tools already available in bacteria, no light-inducible system currently exists to orthogonally control gene expression in mammalian cells. Such a tool would be particularly important in synthetic biology, where orthogonality is advantageous to achieve robust activation of synthetic networks. Here we implement, characterize and optimize a new orthogonal optogenetic tool in mammalian cells based on a previously published system in bacteria called Opto-T7RNAPs. The tool consists of a split T7 RNA polymerase coupled with the blue light-inducible magnets system (mammalian OptoT7 – mOptoT7). In our study we exploited the T7 polymerase’s viral origins to tune our system’s expression level, reaching up to 20-fold change activation over the dark control. mOptoT7 is used here to generate mRNA for protein expression, shRNA for protein inhibition and Pepper aptamer for RNA visualization. Moreover, we show that mOptoT7 can mitigate gene expression burden when compared to other optogenetic constructs. These properties make mOptoT7 a new powerful tool to use when orthogonality and viral-like RNA species are desired in both synthetic biology and basic science applications.