Loading...

Preprints

3D Microenvironment-Specific Mechanosensing Regulates Neural Stem Cell Lineage Commitment

Baek J, Lopez PA, Lee S, Kim T, Kumar S, Schaffer DV.
Preprint from
bioRxiv
16 September 2021
PPR
PPR395293
Abstract

ABSTRACT

While extracellular matrix (ECM) mechanics strongly regulate stem cell commitment, the field’s mechanistic understanding of this phenomenon largely derives from simplified two-dimensional (2D) culture substrates. Here we found a three-dimensional (3D) matrix-specific mechanoresponsive mechanism for neural stem cell (NSC) differentiation. NSC lineage commitment in 3D is maximally stiffness-sensitive in the range of 0.1-1.2 kPa, a narrower and more brain-mimetic range than we had previously identified in 2D (0.75 – 75 kPa). Transcriptomics revealed stiffness-dependent upregulation of early growth response 1 ( Egr1) in 3D but not in 2D. Egr1 knockdown enhanced neurogenesis in stiff ECMs by driving β-catenin nuclear localization and activity in 3D, but not in 2D. Mechanical modeling and experimental studies under osmotic pressure indicate that stiff 3D ECMs are likely to stimulate Egr1 via increases in confining stress during cell volumetric growth. To our knowledge, Egr1 represents the first 3D-specific stem cell mechanoregulatory factor.