Loading...

Preprints

Wnt- and Glutamate-receptors orchestrate stem cell dynamics and asymmetric cell division

Junyent S, Reeves J, Szczerkowski JLA, Garcin CL, Trieu T, Wilson M, Lundie-Brown J, Habib SJ.
Preprint from
bioRxiv
16 June 2020
PPR
PPR176014
Abstract

ABSTRACT

The Wnt-pathway is part of a signalling network that regulates many aspects of cell biology. Recently we discovered crosstalk between AMPA/Kainate-type ionotropic glutamate receptors (iGluRs) and the Wnt-pathway during the initial Wnt3a-interaction at the cytonemes of embryonic stem cells (ESCs). Here, we demonstrate that this crosstalk persists throughout the Wnt3a-response in ESCs. Both AMPA- and Kainate-receptors regulate early Wnt3a-recruitment, dynamics on the cell membrane, and orientation of the spindle towards a Wnt3a-source at mitosis. AMPA-receptors specifically are required for segregating cell fate components during Wnt3a-mediated asymmetric cell division (ACD). Using Wnt-pathway component knockout lines, we determine that Wnt co-receptor Lrp6 has particular functionality over Lrp5 in cytoneme formation, and in facilitating ACD. Both Lrp5 and 6, alongside pathway effector β-catenin act in concert to mediate the positioning of the dynamic interaction with, and spindle orientation to, a localized Wnt3a-source. Wnt-iGluR crosstalk may prove pervasive throughout embryonic and adult stem cell signalling.